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Abstract 

Chemical stereographs are presented as vehicles for representing qualitative three- 
dimensional features of molecules that put stereochemical and conformational distinctions 
in a common graph-theoretic formalism. They extend the concept of a chemical graph by 
adding "tetrads", each qualitatively characterizing the three-dimensional arrangement of 
four atoms with respect to its clinicity and handedness components. The characterization 
is sufficiently precise to distinguish synperiplanar, synclinal (gauche), anticlinal and 
antiperiplanar relationships between vicinal atoms of various conformers. Collectively, 
the tetrads constitute the embedding graph which presents new possibilities in displaying 
the stereochemical and conformational features of a molecule. A chemical graph and one 
of its possible embedding graphs constitute a chemical stereograph. Potential applications 
of chemical stereographs in the areas of structural representation, molecular symmetry 
analysis, and stereo-specific substructure searching are discussed. 

1. Introduction 

Molecules are three-dimensional entities, and complete mechanistic treatments 
of the interactions of molecules must take this into account by careful attention to 
the relative 3D coordinates of each of the atoms. On the other hand, there remains 
an area of the logic of molecular structure, classification and interaction that is best 
understood and most clearly communicated at a qualitative level that does not 
require, and can be obscured by, molecular representation specifying relative 3D 
coordinates of the atoms [1]. This point is amply demonstrated by the structural 
formulas so frequently used to identify molecules under discussion. 
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At whatever qualitative level is being addressed, there is a need for vividly 
relevant diagrams that communicate the qualitative information of the problem. 
Examples include the common structural diagrams for molecules, Fisher projections 
for representing handedness in a sequence of chiral centers, Newman projections 
for indicating handedness and conformational distinctions, and ribbon diagrams for 
indicating "supersecondary" structure in proteins. These diagrams are almost invariably 
highly informative from a chemical viewpoint; otherwise, they are short lived. 
Thus, it is somewhat of a paradox that they are usually quite uninformative from 
a computational viewpoint. This is because, computationally, they are only bit- 
mapped images of two or more colors displayed on a sheet of paper or on a 
computer screen. If one wishes the computer to move beyond the simple storage 
and retrieval of these bit-mapped images, then various perception algorithms are 
required to interconvert these bit-mapped images into an analytical representation 
on which meaningful operations relevant to chemistry can be defined. 

One of these analytical representations which has played an important role in 
many areas of chemistry is the mathematical concept of a graph. A graph is simply 
a set of points, called vertices, and another set consisting of pairs of these points, 
called edges. Although, simple in concept, graphs have found remarkable use in 
chemistry, especially in the form of a chemical graph [2]. As a chemical object, the 
vertices represent atoms and the edges represent the bonds defining the constitution 
of a molecule. As a mathematical object, the chemical graph is a graph in which 
the vertices and edges have been further distinguished by assigning each vertex and 
eclge an appropriate atom and bond label. There are, to be sure, a number of  
"chemical" constraints imposed on this assignment, usually associated with valency. 
For example, a vertex labeled with a "C" cannot share edges with (be bonded to) 
more than four other vertices. Moreover, if one of its shared edges is labeled 
"double bond", then that vertex labeled "C" cannot share edges with more than three 
other vertices. 

Chemical graphs are useful concepts in mathematical and computational chemistry 
because of the mathematical concepts, rclationships and operations that can be used 
to relate graphs. The isomorphic and substructure relationships are two particularly 
important examples. However, it must always be remembered that these relationships 
are defined formalistically in terms of vertices, edges and label assignments without 
regard to chemistry. This can lead to difficulties. For example, 1, 2-dichlorobenzene 
can be represented by a chemical graph as a circuit of alternating single and double 
bonds in two mathematically nonisomorphic ways. Although such discrepancies can 
be used to advantage (see, for example, [3]), they obviously can create difficulties. 

These discrepancies can often be circumvented in numerous ways. For example, 
we might say that two aromatic systems A and B are equivalent if there exists a 
chemical graph representation of A that is isomorphic to a chemical graph representation 
of B. Such a definition uses the mathematical concept of graph isomorphism to. 
define a relevant concept of chemical equivalence. Alternatively, we could replace 
the alternating circuit,of single and double bond labels with aromatic bond labels. 
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Then, aromatic systems A and B are equivalent if their chemical graphs are 
mathematically isomorphic. These two definitions of chemical equivalence accomplish 
the same end. Moreover, both use the same definition of mathematical isomorphism 
between graphs. However, the latter definition of topological chemical equivalence 
is simpler and more directly related to the mathematical definition of graph equivalence. 

This issue of chemical equivalence versus mathematical equivalence underlies 
the focus of this paper. Here, we seek a general definition of stereochemical equivalence. 
However, what mathematical definition of equivalence do we use to define stereo- 
chemical equivalence? 

A number of approaches have been tried. For a review, see [4]. Many in use 
in chemical-structure databases involve some type of extension of the atom and 
bond labels of the chemical graph. Two new classes of labels are defined. The first 
is a unique numbering of the atoms which needs not, but often reflects some sort 
of prioritization of the atoms somewhat along the line of the CIP (Cahn-Ingold-  
Prelog) rules [5]. The second is a parity label assigned to the atoms or bonds 
defining the chiral centers. Since chirality in/17 3 requires at least four points, a label 
assigned to a single vertex or edge cannot represent chirality without additional 
statements clearly indicating the set of atoms involved in the parity label assignment. 
In the cases of asymmetric carbon centers and double bonds, these additional statements 
can be quite simple. Moreover, these special cases handle a large majority of the 
compounds in many chemical databases. However, as one moves to higher coordinate 
centers or to the specification of the dihedral angles about a carbon-carbon single 
bond, a much more elaborate set of statements is required to unravel this parity 
assignment. This becomes especially true if one wishes to distinguish the various 
subarrangement of ligands that can be distinguished at a higher coordinate center. 
Although such subarrangements can, in principle, be computationally unraveled, the 
algorithms for doing so can become complex and unattractive from a mathematical 
viewpoint. 

If one's only requirement is to determine if two labeled graphs used to 
represent stereochemistry are isomorphic, as in the case of compound registration, 
matters are greatly simplified by numbering the atoms in a canonically unique 
manner. Many approaches have been proposed [6-9]. In this case, the parity assignment 
does not need to be unraveled because equivalent stereochemical representations 
will always have the same assignment. Moreover, in the case of the numerous 
dihedral angles that may share a common bond, the parity assignment can represent 
the dihedral angle of whichever pair of vicinal atoms comes first in the canonical 
numbering [6]. However, in terms of a general treatment of stereochemistry from 
a mathematical chemistry viewpoint, canonical numbering schemes add an additional 
layer of complexity on the already bothersome problem of mathematically unraveling 
parity assignments. 

A somewhat different approach is being promoted in the development of a 
standard data exchange format for chemistry [4]. In this case, the parity label is 
associated with the set of atoms that actually define the chiral center, thereby 
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eliminating the need to "decode" the atoms associated with the parity label. The 
parity assignment is made with respect to a standardized numbering associated with 
each "type" of chiral center. From a mathematical and computational viewpoint, 
both generality and simplicity are achieved in this manner. Moreover, only eight 
"types" (square, rectangle, anti-rectangle, tetrahedron, square-bipyramid, trig-bipyramid, 
octahedron, and cube) seem to cover most of the stereochemical distinctions required 
for most chemical databases. These features commend this approach as a data 
exchange format since the major requirement is an unambiguous transfer of structural 
information. Yet this approach has some problems from the viewpoint of mathematical 
chemistry. Although closed from a practical point of view, the set of possible types 
is not mathematically closed. In addition, it is not clear how one compares a sub- 
arrangement of atoms in one type with a subarrangement of atoms in another type, 
or how one uses types to extend the concept of a generalized transformation in 
computer-aided organic synthesis [10-15]. 

The use of "types" of three-dimensional arrangements has also been proposed 
by Balasubramanima [16] in an interesting group-theoretic treatment of stereochemistry. 
In this case, the nonterminal vertices of the chemical graph are distinguished as 
roots and assigned a type. The type is characterized in terms of group operations. 
The author refers to the chemical graph with the types assigned to the nonterminal 
vertices as a "molecular stereograph". We also use the term "molecular stereograph", 
but without employing group-theoretic terminology. In addition, our use incorporates 
dihedral information not represented in the Balasubramanian molecular stereograph. 
Although the Balasubramanian extension of the chemical graph does not incorporate 
dihedral information, the possibility of such a further extension would seem to 
exist. Whether or not either or both of these approaches might then be viewed as 
derivatives of the other has yet to be determined. 

The augmentation of the chemical graph with group-theoretic concepts in 
obtaining representations of stereochemistry is a wide and productive area of 
research [17-22]. Here, we can only point out a few fundamental distinctions from 
our proposed approach. In most cases, stereoisomers are represented as permutations 
on a reference assignment of a set of ligands to the positions defined by a molecular 
skeleton. This facilitates both the enumeration of stereoisomers (see [23] for a 
review) and the examination of stereoisomerization modes [24,11,25 and cited 
references]. However, from a molecular similarity point of view, this creates difficulties 
when one wishes to define the similarities and differences between representations 
defined with respect to different molecular skeletons. Groups defined in terms of 
the automorphisms of a chemical graph have also been used to identify the chiral 
centers of a molecule and to generate all the stereoisomers of a molecule [19]. 
Interestingly, the same authors use a version of the parity labeled graph discussed 
earlier to actually represent the molecular configuration [18]. 

In a series of articles, Dreiding and coworkers [26,27] propose representing. 
the stereochemical structure of a molecule using "multiplexes", which can be viewed 
as an extension of the chemical graph. A chemical graph specified how pairs of 
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atoms are related in terms of their being bonded or not bonded. A multiplex specifies 
how pairs, triplets or even quadruplets of atoms are related. In particular, quadruplets 
of atoms can be used to specify the handedness of the four atoms bonded to an 
asymmetric carbon. Our approach falls into this last genre, with the twist that the 
quadruplets are organized into doublets relating one pair of atoms with another pair. 
These doublets are then represented by edges of a second graph, called the embedding 
graph. An embedding graph combined with the chemical graph constitutes a mathe- 
matical representation of the structural formula that provides a mathematically 
simple definition of a stereo-specific substructure. 

Although the purpose of this study is to detail exactly how these two graphs, 
the chemical graph and the embedding graph, reflect the stereochemical structure 
of a molecule, the basic idea is quite easy to illustrate. Figure 1 shows eight 
qualitative stereochemcial positions associated with the conformers of 1, 2-disubstituted 

X a Y d  

Yd 

0 +30" -t-60 +30" =1=120 +30" 180 +30" 
synperiplanar synclinal anticlinal antiperiplanar 

Fig. l .  Conformers of 1, 2-disubstituted ethanes. 

ethane. Figure 2 decomposes these positions into their clinicity and handedness 
components. The details of this decomposition will be given in section 2. 

Figure 3 depicts an indexed conformation of 1, 1, 2-trisubstituted ethane, 
together with its chemical graph and embedding graph. The chemical graph is a 
familiar representation of the bonds of the molecule. The only thing new is the 
"embedding graph". We see that each "vertex" of the embedding graph specifies a 
pair of indices of the chemical graph. Consequently, each "edge" of the embedding 
graph specifies the relationship between two pairs of atoms in the chemical graph. 
For example, in the center of the embedding graph, we see that the atom pair bc 
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The Nine S t e r e o c l a s s e s  
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Fig. 2. A decomposition of nine qualitatively distinct arrangements 
of two vicinal atoms into their clinicity and handedness components. 

is joined to the atom pair ad by a "synpedplanar" eclge as defined in fig. 2, reflecting 
the fact that the dihedral angle / a b c d  is roughly 0 °. The cis clinicity is represented by 
the small circle of the edge, while the degenerate hancledness is represented by drawing 
the main line of the edge straight. Similarly, the atom pair bc is joined to the atom 
pair de by an "anticlinal(-)" edge, indicating that the dihedral angle Z e b c d  is between 
- 9 0  ° and - 1 8 0  °. Here, the trans clinicity is represented by the short cross mark, and 
the negative or left-handedness is represented by a "left-tnming" line as one walks from 
the bc pair to the de pair. 

The dihedral a n g l e / a b c e  formed by the three geminal atoms a, c, and e and the 
central atom b is also well defined. It is the angle formed by the intersection of the abc- 
plane with the ebc-plane. We can visualize this angle by replacing the d in fig. 2 with 
an e. In this case, atom e would actually lie in front of atom c rather than behind 
atom c, as is the case for atom d. The dihedral angle Zabce  can be seen to be between 
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Fig. 3. The chemical graph and embedding graph 
of a conformation of 1, 1,2-trisubstituted ethane. 

90 ° and 180 °. This is indicated in the embedding graph by the "anticlinal(+)" edge connecting 
the atom pair bc to the atom pair ae. Among other things, the "anticlinal(+)" gives an 
orientation to the four points that is equivalent to knowing the handedness of atom b. 
If ligand Z is reflected in the plane of the paper, the sign of the latter two dihedral angles 
Zebcd  and Zabce  would change. This change would be reflected by changes in the 
handedness of the corresponding edges in the embedding graph. 

Figure 3 is a brief illustration of a conformational stereograph. It specifies both 
the handedness of the chiral center and the qualitative size of the bond angle Zabe  
through the biedge (bc, ae). It specifies the orientation and qualitative magnitude of the 
two dihedral angles Zabcd  a n d / e b c d  through the biedges (bc, ad) and (bc, ed). Thus, 
the stereograph provides a discrete representation of the qualitative three-dimensional 
arrangement of atoms without the use of coordinates, symmetry arguments and permutation 
groups, reference structures and types, or atom and bond parity labels requiring clarifying 
specifications of the atoms involved. 

This brief illustration also leaves many points unanswered. For example, why was 
the dihedral angle d a b c d  included, but the dihedral angle / a b e c  was not? Why was 
the dihedral angle Zabcd  corresponded to the biedge (bc, ad) and not to the biedge 
(ab, cd)? These details will be clarified as the concept of a stereograph is developed. 
Section 2 begins by developing the concepts of clinicity and handedness for an ordered 
set of four points in three-dimensional space without reference to chemical graphs. 
Section 3 brings the chemical graph and the embedding graph together into a definition 
of a chemical stereograph and shows how to determine if two stereographs are equivalent. 
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The concept of isomorphism underlying this definition of equivalence is further developed 
in section 4, which discusses applications of chemical stereographs in structural representation, 
molecular symmetry analysis, and stereo-specific substructure searching. A glossary of 
terms can be found in the appendix. 

2. Tetrads 

We begin by defining the concepts of clinicity and handedness without reference 
to a chemical graph. There are a number of reasons for doing so. First, it frees the 
underlying geometric concepts of stereochemistry from their diverse expressions arising 
out of the specialized nomenclature and notational needs associated with the study of 
particular structural families and stereochemical problems. Second, it distinguishes the 
unique role played by the chemical graph in making stereochemical distinctions. Third, 
it enables one to see more clearly how, without the use of coordinates or permutations, 
a very primitive stereochemical concept can be repeatedly applied in diverse chemical 
contexts to develop very discriminating representations of molecular structure. 

There are a number of qualitative statements one can m ~ e  regarding the arrangement 
of any four poin{s {a, b, c, d} in three-dimensional space (herein denoted by ~3). These 
statements are often made with respect to an imposed ordering of the points, much as 
is done when one orders the four ligands of an asymmetric carbon atom under the Cahn-  
Ingold-Prelog rules or when one orders the four atoms of a dihedral angle. We indicate 
this ordering by writing the four points as a < b < e < d or by saying a precedes b 
precedes c precedes d. The ordered set a < b < c < d will be called a tetrad. We shall 
call a the first end, b the first center, c the second center, and d the second end. 

Let T = a < b < c < d  and assume that the four points of  T are embedded 
in/R 3. Then, we can associate a clinicity C(T) and a handedness H(T) value with T as 
follows. We always associate the dihedral angle Zabcd with 7". This dihedral angle is 
the angle formed by the intersection of the plane containing points a, b and c with the 
plane containing points b, c and d. If the set {a, b, c}, the set {b, c, d}, or both sets of  
points are collinear, as would arise in the cases involving a linear triple bond, the 
dihedral angle dabcd is undefined. In this case, we say that the dihedral angle is 
degenerate and we write C(T) = 6 and H(T) = 6 to indicate that both its clinicity a-rid 
handedness are degenerate. If neither set is collinear, there is a well-defined dihedral 
angle Zabcd associated with the tetrad T. To visualize this angle, we look down the line 
segment bc as indicated in fig. 2. Various combinations of clinScity and handedness 
values are indicated in that figure. These are defined algebraically by 

C(T) = f 

c if 0 < ]Zabcdl < 9 0 -  e, 

6 i f 9 0 - e < l Z a b c d l < 9 0 + e ,  

t i f 9 0 + e < l Z a b c d l <  180 

and 
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if e <  Zabcd< 1 8 0 - e ,  

if 0 < labcd[ < e or if 1 8 0 -  e <  [Zabcdl < 180, 

if - 1 8 0 + e _ < Z a b c d < - e .  

The value of e is somewhat arbitrary, but should be chosen so that the dihedral angles 
seldom fall near the edges of the defining cutoff intervals. 

The ordered pair (C(T), H(T)) consisting of the clinicity C(T) and the handedness 
H(T) of the tetrad T will be called the stereocity of that tetrad. It should be noted that 
every tetrad embedded in/R 3 has a well-defined stereocity, even if its dihedral angle is 
degenerate. 

Although our use of figs. 1 and 3 in illustrating and developing the concept of  
a tetrad and its stereocity suggests that chemical bonds are somewhat basic to the 
definitions, this is not the case. The preceding algebraic definition is applicable to every 
set of  four points in/R 3 which has somehow been prioritized or ordered. However, we 
shall later see how the bonding structure of a molecule enables us to select which sets 
of four points are of interest, and how these points might be ordered. 

Four points {a, b, c, d} can be ordered in any one of 4! or 24 possible ways. Each 
ordering defines a tetrad and can be thought of as a perspective from which to view the 
point set {a, b, c, d}. As we have just seen, each tetrad or "perspective" can have any 
one of nine possible stereocities. The 24 tetrads with their associated stereocities give 
a fairly detailed characterization of the arrangement of the four points which is independent 
of changes in scale and location. We shall refer to this characterization as the tetral 
arrangement of four points. 

As a characterization of the arrangement of four points in space, the tetral arrange- 
ment is a much finer classification of the arrangements of four points in space than 
the CIP classification of all nonplanar arrangements into achiral, left-handed or right- 
handed [28]. The lower resolution of the CIP characterization arises because the ordering 
of or "perspective on" the four points is not treated as an inherent part of the characterization. 
Rather, the ordering is introduced only if the four points are in a chiral arrangement. As 
a consequence, the CIP classification must treat cis-trans distinctions as planar concepts 
involving the handedness of two triangles in the plane. In this way, planar arrangements 
of four points are classified as "achiral in the plane", cis, and trans. The "achiral in the 
plane" arises if two or more of the four points are not distinguished. By making the 
ordering an inherent part of the characterization, the distinction or nondistinction of the 
four points due to symmetry considerations ceases to be an issue; the ordering itself 
distinguishes the points. 

It is usually most efficient to treat a problem at the lowest level of  resolution that 
can differentiate any isgues that must be resolved in the problem. From this view, the 
CIP rules often suffice. We reduce the resolution of the tetral arrangement classification 
by excluding many of the tetrads that might be associated with four points. This will 
be done in the next section when the chemical graph is reintroduced into the discussion. 

The number of possible tetral arrangements of four points in R 3 is an open problem. 
Its solution will require a definition of when two tetrads embedded in//?3 are equivalent. 



12 M. JOhnson et al., Chemical  s tereographs 

Before giving a definition, it helps to see what happens to the handedness of  the (c, +) 
tetrad in fig. 2 when we change the ordering of  the two centers and/or the ordering of  
the two ends. Suppose we change only the ordering of the two ends. To ascertain the 
handedness of the dihedral angle in this case, we again look clown the bc  line segment 
from b to c. However, now we must note the direction our eye moves as it proceeds from 
point d to point a, because d comes before a in the interchanged ordering. In this case, 
our eye goes to the left. Thus, an interchange in the ordering of the two ends changes 
the handedness. Similarly, if we interchange the ordering of two centers, we must look 
clown the b c  line segment from point c to point b. In effect, we must look down the bc  

line segment in fig. 2 from the opposite side of the paper. In this case, our eye moves 
to the left as it proceeds from point a to point d. Consequently, an interchange in the 
ordering of the two centers changes the handedness. However, if we interchange both 
the two ends as well as the two centers to obtain the dihedral angle Z d c b a ,  we must 
look from the opposite side of the paper and move our eyes from d to a. In this case, 
our eyes move to the right just as they did originally. It follows that if we make both 
interchanges, i.e. interchange the ends and also interchange the centers, then the assigned 
handedness is unchanged. 

Now we define when we wish to say two tetrads are handedly equivalent. Let 
A< = a < b < c < d and B< = w < x < y < z be two tetrads with point sets A = {a, b, c, d} 

and B = { w , x , y ,  z}.  As we have seen, if the points in A and the points in B are 
points in //?3, then both A< and B< have wen-defined stereocities. Any one-to-one 
mapping f :  A -~ B that corresponds cen ter s  to cen ter s  and ends  to ends  will be called 
a s t ruc tura l  c o r r e s p o n d e n c e  between A< and B<. There are only four possible structural 
correspondences, given by 

( f l )  a +-+ w,  b <--~ x , c  ~--> y and d ~-~ z, 

( f 2 )  a <--~ w,  b +--~ y,  c <-~ x and d +-~ z, 

(f3) a ~-~ z, b e-> x, c ~-> y and d e-~ w,  

(f4) a e-~ z, b +--> y , c  +--> x and d ~-~ w.  

Correspondence fl interchanges no points, while correspondence f4 makes two interchanges. 
Thus, fl  and f4 are called even correspondences. On the other hand, correspondences f2 
and f3 are called odd since they make one interchange. We shall say A< is handed ly  

equivalent to B< with respect to the structural correspondence f :  A ---)B if one of  three 
cases holds: 

(1) A< and B< both have degenerate handedness; 

(2) A< and B< have the same nondegenerate handedness and f is even; 

(3) A< and B< have opposite nondegenerate handedness and f is odd. 

Every two nondegenerate tetrads T = a < b < c < d and T' = w < x < y < z are 
handedly equivalent with respect to two of the four possible structural correspondences 
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and not handedly equivalent with respect to the other two. If T and T' have the same 
nondegenerate handedness, then T and T' are handedly equivalent with respect to the 
two even structural correspondences, but not with respect to the two uneven ones. If T 
and T' have opposite nondegenerate handedness, then T and T' are handedly equivalent 
with respect to the two odd correspondences, but not with respect to the two even ones. 
Thus, we must rule out some of the possible structural correspondences if we are to have 
a definition of stereo equivalence of tetrads that distinguishes handedness. 

If the two tetrads are embedded in/R 3 as indicated by the two tetrads in fig. 4, 
this can be simply done by requiring that the structural correspondences preserve relative 

/• (o,o,1) 

(o,o,o) 
/ 

a /(0,2,0) 

a<b<c<d 

h e f t - h a n d e d  

c x y 
(3,0,0) / / ]  (o,o,o) (3,0,0) 

w / ZI(o,o,_1) 
(0,2,0) 

w < x < y < z  

right-handed 

b 

c 

d 
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equ iva len t?  

p reserves  
re la t ive  
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f l  f 2  f 5  

O W Z W 

b x x y 

y y x 

z w z 

no yes yes 
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f4 

z 
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x 

w 

no 

no 

C 

Fig. 4. The four structural correspondences between two tetrads embedded in R3. 

distances. (Ignore the coordinate line segments used to "visualize in ~3,, each set of  four 
points and concentrate only on the tetrad ordering and relative distances of the points.) 
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In the figure, only correspondence fl preserves relative distances because only fl corresponds 
the smallest distance in fig. 4(a), which is between points b and d, to the smallest distance 
in fig. 4(b), which is between points x and z. Since the two tetrads are not equivalent 
under f~, the two tetrads are not handedly equivalent, as indeed they clearly cannot be. 

We define two tetrads T and T" embedded in/R 3 to be equivalent in ~3 if they 
have identical clinicities and they are handedly equivalent with respect to a structural 
correspondence that preserves relative distances. This definition is a "geometric" definition 
of  equivalence. Its use of distance implies a use of coordinate representations of  the 
points. We seek a coordinate-free formalism for stereochemistry. Thus, we shall restrict 
the possible structural correspondences using constraints defined in terms of the connectivity 
or bonding in the chemical graph rather than constraints defined in terms of  relative 
distances. 

3. Chemical s tereographs 

Consider the period of time a set of atoms exists as a particular molecule in three- 
dimensional space. During this period of time, the pairwise distances of the molecule 
are in continual flux. However, there are many constants or invariants in this flux. In 
particular, the distance between two bonded atoms stays within a small circumscribed 
range that defines their bond distance. If by ch~mce this range is exceeded, the bond is 
broken and the set of atoms changes its molecular identity. A chemical graph of  a 
molecule can be viewed as a drawing of that set of invariants of  this flux which define 
the chemical bonds of the molecule. 

There are other invariants of this flux that are not encoded in the chemical graph. 
For example, the dihedral ~mgle given by a cis arrangement of two vicinal atoms associated 
with a double bond varies within a small circumscribed range about 0 °. As another example, 
any three geminal atoms of an sp 3 carbon atom stay within a relatively well-defined 
arrangement. These examples describe invariants associated with the fluxional motion 
of  four atoms which Floersheim et al. [27] refer to as "mobility restrictions". In the 
proposed formalism, these stereochemical invariants are represented as tetrads with 
assigned stereocities. What we shall term the embedding graph of  a molecule can be 
viewed as a "drawing" of a set of tetrads which define various stereochemical invariants 
of  the molecule. Whereas the edges of a chemical graph have values such as "single" 
and "aromatic", the edges of the embedding graph have values such as "synclinal(-)" 
and "antiperiplanar". 

3.1. TETRADS DEFINED ON CHEMICAL GRAPHS EMBEDDED IN/R 3 

We begin by defining an important subset of tetrads based on the chemical graph 
of  the molecule. To do this, we shall refer to the two ends and two centers of  a tetrad 
as the tetral structure of the tetrad. The f o u r t e t r a d s a < b < c < d , d < b < c < a ,  
a < c < b < d and d < c < b < a have the same tetral structure because they have identical 
centers and ends. On the other hand, a < b < c < d and b < a < c < d differ in their 
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tetral structure because the first tetrad has points a and d for ends, whereas the second 
has points b and d for ends. 

Two types of tetrads can be distinguished by how their tetral structures are defined: 
vicinal and geminal. The vicinal tetrad is perhaps the most obvious. Its ends are the two 
vicinal atoms and its centers are the two atoms of the center bond. A vicinal tetrad is 
classified as either free or fixed, depending on whether or not the bond connecting the 
centers is free to rotate. 

Now suppose a molecule is flopping around in/R 3. At each instant, any vicinal 
tetrad has a well-defined stereocity according to the conventions set forth in fig. 2. If 
the vicinal tetrad is fixed, the stereocity will remain the same for all instants in time over 
which the molecule maintains its identity. Thus, a fixed tetrad has a well-defined value 
for a molecule, or expressed another way, is a motion invariant of  a molecule. 

On the other hand, the stereocity of a free vicinal depends on which instant in time 
we are talking about. However, over any interval of  time in which the molecule exists 
as a single conformer, a free vicinal will, generally speaking, have a well-defined 
stereocity. That is, for all instants in time that the molecule exists as that particular 
conformer, the stereocity assigned that tetracl will remain unchanged. Thus, a free vicinal 
tetrad is a motion invariant of a conformer, but not of the associated molecule. 

Our choice for the geminal tetrads is less obvious, and reflects the work by 
Dreiding and Wirth [26] on chirons. Consider the handedness of the asymmetric carbon 
atoms in the following 1-substituted-fluoroethanes. Using the Cahn-  Ingold-Prelog (CIP) 
ordering of the atoms, molecules 1 and 2 are assigned opposite handedness, which 

CHs  J/H CHs- CH NH 2 

NH 2 H PH 2 

I 2 3 

Scheme 1. 

symbolically suggests to the uninitiated some type of stereochemical difference. This is 
as it should be. On the other hand, molecules 1 and 3 are assigned opposite handedness, 
which again symbolically suggests to the uninitiated some type of stereochemical difference. 
However, in this case, the amino and phosphino groups occupy the same relative positions 
in the two molecules. Thus, the CIP rules do not lead to a symbolically straightforward 
method of comparing the relative positions of the amino and phosphino groups in 
molecules 1 and 3. The problem does not lie in the choice of the ordering of the atoms. 
The problem lies in the fact that the relative positions of the amino and phosphino groups 
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are defined with respect to the central atom and the remaining three ligands, whereas 
the CIP hancledness is assigned with respect to the four ligands. 

Although one could easily consider tetrads whose four points constitute the four 
geminal atoms surrounding an asymmetric carbon, this problem of distinguishing between 
the absolute stereochemical assignment (the R, S assignment) from the relative stereochemical 
positioning is best avoided for our ultimate purpose of incorporating stereochemistry into 
a formalism suitable for molecular similarity analysis of diverse structures. Thus, we 
define the four atoms of a geminal tetrad to consist of the central atom and three geminal 
atoms. In addition, we require that every geminal tetrad has its associated central atom 
as one of its centers. We shall classify a geminal tetrad as either free or fixed, depending 
on whether or not its central atom is invertible. For example, since amines generally have 
low inversion barriers, geminal tetrads in which the central atom is an sp 3 nitrogen generally 
will be free. On the other hand, geminal tetrads in which the central atom is an sp 3 carbon 
generally will be fixed. 

Again, suppose a molecule is flopping around in/R 3. At each instant, a geminal 
tetrad has a well-defined stereocity according to the conventions set forth in fig. 2. If 
the tetrad is fixed, the stereocity will remain the same for all instants in time over which 
the molecule maintains its identity. Thus, like a fixed vicinal tetrad, a fixed geminal 
tetrad has a well-defined value for a molecule, i.e. is a motion invariant of  that molecule. 

On the other hand, the stereocity of a free geminal tetrad depends on which instant 
in time we are talking about. For example, if the central atom of the geminal tetrad is 
the nitrogen of an amine, the handedness of the associated geminal tetrad would change 
each time the amine undergoes an inversion. However, over any interval of time in which 
the molecule exists as a single conformer, a free geminal tetrad will, generally speaking, 
have a well-defined stereocity. Thus, a free vicinal tetrad is a motion invariant of a 
conformer, but not of the associated molecule. 

Prelog and Helmchen [28] discuss many of the issues raised here regarding the 
definitions of vicinal tetrads and geminal tetracls using the terms helical and tripodal 
stereogenic units. However, there are some critical differences that should be noted 
besides the differences in the way ordering or precedence is taken into account and the 
resulting resolution of the stereochemical characterizations that is obtained. Their definition 
of a stereogenic unit is "three-dimensional"; the different types of units are defined in 
terms of chirality centers, planes, and axes. Moreover, the terms "helical" and "tripodal" 
have strong geometric connotations which we are removing in order to obtain a mathematics 
of stereographs which is free of ttaree-dimensional concepts and operations. 

The concepts of vicinal and geminal tetrads are easily generalized to handle more 
complicated stereochemical distinctions that can arise. A vicinal tetracl is easily generalized 
by replacing the centers of the tetrad with two atoms at the end of any path, such as the 
path defined by the two double bonds of allene. Such extensions are necessary if one 
is to use chemical stereographs to differentiate the stereoisomers of substituted allenes. 
Geminal tetrads can be generalized in a similar manner, i.e. replacing the bonds with 
paths that intersect only at the "central" atom. The concepts of fixed and free can also 
be defined in this more general setting, since they simply distinguish tetrads whose 
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assigned stereocity remains unchanged during the existence of  a molecule from ten'ads 
whose assigned stereocity can change during that existence. These generalizations are 
given simply to suggest the variety of ways tetrads might be defined in terms of  the 
chemical graph of a molecule. However, since geminal and vicinal tetrads encompass 
by far the largest part of the stereochemistry of small molecules, we shall restrict our 
attention to such tetrads in the remainder of this study for reasons of  simplicity. 

3.2. A LOCAL ORDERING CONVENTION FOR REDUCING THE NUMBER OF TETRADS 

Recall that the tetral structure of  a tetrad is a specification of its centers and ends. 
As noted earlier, there are always four tetrads that have a given pair of centers 
x and y, and a given pair of e n d s w a n d z .  T h e s e a r e w < x < y < z , z < x < y < w ,  
w < y < x < z, and z < y < x < w. Any one of these tetrads determines the stereocity 
of  the other three by virtue of the four structural cmvespondences in section 2. Thus, we 
only need to include one of them in the embedding graph. The question is: Which one? 

The CIP rules attempt to obtain a canonical ordering that can be agreed upon by 
investigators. As mentioned in the introduction, canonical naming schemes are useful for 
identifying compounds, but have received little use in molecular similarity analysis due 
to, we feel, their mathematical and algorithmic complexity. In fact, molecules are 
still being envisioned which have nonequivalent atoms that the CIP rules fail to 
distinguish [29, 5]. Instead, we shall use the following ordering convention which assumes 
that the atoms are alphanumerically ordered by their indices. This ordering convention 
is "local" like the one in [5]. As such, it is easily evaluated and well-defined in all cases. 
We shall see that it still provides an "absolute" designation of  handedness in many 
situtations. 

(1) 

(2) 

The atoms of a vicinal tetrad are always ordered from one end to the other in the 
direction consistent with the alphanumeric ordering of  the indices of  the centers. 

The atoms of a geminal tetrad are ordered so that the central atom is the first 
center. If one of the ends is a terminal atom and the other end is not, that terminal 
atom is the second end. If both ends are terminal atoms and one is a hydrogen 
atom, that hydrogen atom is the second end. Otherwise, the remaining two ends 
are ordered alphanumerically by their indices. 

In many cases, this ordering convention generates an "absolute" handedness 
designation. For example, suppose we have a geminal tetrad with central atom y, other 
center x, terminal end w, and nonterminal end z. This situation would arise if the central 
atom were the asymmetric carbon in 3-pentanol, the nonterminal end and other center 
were the two geminal carbons, and the terminal end were the alpha hydrogen. From the 
second statement in rule (2), the two ends are ordered according to z < w. From the 
definition of a tetrad, the centers must lie between the two ends in the ordering of  the 
four points. It follows that z < y < x < w is the only tetrad possible having the supposed 
tetral structure. Since we arrived at this ordering without recourse to the alphanumeric 
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ordering of the vertices of the chemical graph, the assigned stereocity associated with 
the arrangement of these four atoms will be independent of the investigator. A similar 
statement can always be made with regard to vicinal tetrads. To see why, we simply note 
that the two possible orderings are even permutations of each other and consequently 
must be assigned identical stereocities. This independence of the stereocity assignment 
from the alphanumeric ordering oF the atoms of a tetral structure is summarized in the 
following ordering invariance rule: 

The only stereocity assignments that are dependent on the alphanumeric 
ordering of the atom indexing are those for geminal tetrads whose ends are 
(a) both nonterminal atoms, (b) both terminal atoms, neither of which is 
a hydrogen, or (c) both hydrogen atoms. 

3.3. REPRESENTING THE TETRADS OF A CHEMICAL GRAPH AS AN EMBEDDING GRAPH 

We have been using the term "embedding graph" for the set of tetrads associated 
with the chemical graph. We have not actually shown that the information in this set 
of tetrads can, in fact, be represented by a graph, that is, by a set of vertices and a set 
of  edges. 

We begin by representing the tetral structure of each tetrad a < b < c < d as an 
ordered pair (be, ad) in which the first pair, b and c, of points defines the centers of the 
tetrad and the last pair, a and d, defines the ends. This ordered pair will be called a 
biedge. 

The biedge (bc, ad) is in standard form because its centers and ends are both 
ordered alphanumerically. This is not essential. Tile biedges (be, da), (cb, ad) and (cb, da) 
also represent the tetral structure of the tetrad a < b < c < d. Whenever convenient, we 
shall write biedges in standard form. 

If we are considering only vicinal and geminal tetrads, it is an easy matter to 
correspond any biedge to a unique tetrad by means of our ordering convention. Thus, 
we have a one-to-one correspondence between the set of vicinal and geminal tetrads of 
a chemical graph with alphanumerically labeled vertices and the set of  biedges associated 
with that same graph. 

We now let the set of biedges define the set of  directed edges of the embedding 
graph and let the collection of center pairs and end pairs of the biedges define its vertex 
set. We shall call this graph a generic embedding graph. An embedding graph is a genetic 
embedding graph in which each biedge is assigned a stereocity. 

Figure 5 illustrates these definitions for the simple case of a synclinal conformation 
of n-butane. Assuming the points in the chemical graph are ordered in accordance with 
the alphanumeric ordering of their indices, the only vicinal tetrad constructable from the 
chemical graph is given by w < x < y < z. There are no geminal tetrads. Consequently, 
its generic embedding graph consists of a single biedge (xy, wz), indicated by drawing 
a directed line starting at a dot placed next to the center pair xy and terminating at the 
end pair wz. 
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C C w\ ,p z 
C x - - C y  

A synclinal conformation 
of the skeleton of n-butane.  

C - - C  - - C  - - C  w x y z 

Its hydrogen-reduced chemical graph. 

w<x<y<z  

its only tetrad. 

xy.  wz 

Its generic embedding graph. 

xy ~ wz 

Its embedding graph. 

Fig. 5. The hydrogen-reduced graph and an associated embedding 
graph of a synclinal conh~rmation of normal butane. 

To obtain the embedding graph, we replace each directed line in the generic 
embedding graph with a corresponding stereocity symbol from fig. 2. In this notation, 
the marked end is placed nearest the center pair. The mark is a circle if the clinicity is 
cis, a dot if the clinicity is degenerate, and a short line creating a tee if the clinicity is 
trans. In addition, as one "stands" on the side of the paper with the printed arc and 
"walks" along the arc from the center pair over to the end pair, one will "tum to the right" 
if the handedness is plus and "turn to the left" if the handedness is minus. Otherwise, 
the handedness is degenerate and the line is straight. In fig. 5, the single line in the 
generic embedding graph is replaced by the synclinal(+) symbol. 

Figure 3 is now understandable for the most part. The vicinal biedge (bc, ad) is 
associated with a synperiplanar tetrad with centers b and c and ends a and d. We see 
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from the chemical graph that this tetrad is a vicinal tetrad. By the ordering convention, 
the centers are ordered alphanumerically according to b < c and consequently the point 
set must be ordered a < b < c < d. The geminal biedge (be, ae) is associated with an 
anticlinal(+) tetrad with centers b and c and ends a and e. We see from the chemical 
graph that this is a geminal tetrad. By the ordering convention, the centers are ordered 
so that the center corresponding to the central atom of the tetrad comes first, i.e. 
b < c. Since the two ends are not distinguished by the ordering convention, they are 
ordered alphanumerically. Thus, the corresponding tetrad is a < b < c < e. 

Although we can understand the information conveyed in the embedding graph, 
our reasons for including some biedges in the embedding graph and not including others 
are not yet clear. The biedges (ab, cd) and (cd, ae) are not included because their centers 
and ends do not represent tetral structures of either vicinal or geminal tetrads. However, 
the biedges (be, ac) and (ab, ce), which have tetral structures corresponding to geminal 
tetrads, were also excluded. The reason for doing so will be addressed after we formally 
define a chemical stereograph. 

3.4. DEFINITION OF A CHEMICAL STEREOGRAPH 

Let G = (V, E) denote a chemical graph in which the vertices in V have atom 
assignments and the edges have bond assignments. Let "/'denote a set of tetrads defined 
on G which are in a one-to-one correspondence with a set BE of biedges. Then, the triple 
(V, E, BE) will be called a chemical stereograph with chemical graph (V, E) and embedding 
graph (BV, BE), where BV is the set of center pairs and end pairs derived from the 
biedges in BE. 

The generality of this definition merits emphasis. Although we have largely been 
restricting our attention to vicinal and geminal tetrads, no such restriction is made or 
implied in the definition of a chemical stereograph. Any of the 24 possible orderings of  
any set of four atoms of the underlying chemical graph might constitute a tetvad corresponding 
to a biedge in BE. The only requirement is that there exists a one-to-one correspondence 
between the tetrads in q-and the biedges in BE. This correspondence will usually come 
in the form of some type of correspondence convention. Section 3.2 illustrated how a 
correspondence convention can be constructed when the tetrads in 'Tare either vicinal 
or geminal tetrads. This convention easily generalizes to the case of  generalized vicinal 
and generalized geminal tetrads. 

The delinition of a chemical stereograph also generalizes to the case in 
which the vertices in V need not represent atoms and the edges in E need not represent 
bonds. For example, the vertices might represent characteristic points on the g-helices 
and fi-strands defined by the secondary structure of a protein and the edges denote 
various ways these characteristic points might be pairwise associated [30,31]. We will 
usually refer to a chemical stereograph by the generic term stereograph unless we wish 
to emphasize the particular tie a chemical stereograph has to its underlying chemical 
graph. 
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3.5. MOLECULAR AND CONFORMER STEREOGRAPHS 

A chemical graph with p vertices gives rise to p choose 4 or (p(p- 1 ) ( p -  2) 
(p - 3)/4!) ways of selecting the four atoms of a tetrad. Each such subset gives rise to 
4 choose 2 or 6 possible tetral structures. Since each tetral structure can be ordered 4 
ways, it is clear that there is a large number of possible tetrads that might be used to 
characterize the three-dimensional structure of a molecule. By means of the four structural 
correspondences in section 2, the latter four orderings were shown to convey the same 
information. As a consequence, only one ordering is needed. However, we are still left 
with a large number of tetral structures. Section 3.1 excluded all but a fraction of the 
tetral structures by restricting our attention to vicinal and geminal tetrads. In this section, 
two factors will be considered in further reducing the number of  tetrads under consideration. 

The first factor relates to the amount of structural information available. If the 
stereocity of a tetrad is not constant for a molecule, that tetrad can be excluded from 
consideration. It follows that more tetrads are used to represent conformers than to 
represent their corresponding molecules because more is known about the dihedral 
angles of conformers than about their corresponding molecules. This distinction is reflected 
in the distinctions between molecular and conformer stereographs. 

However, even the number of tetrads in a molecular stereograph can be quite 
large. A pentacoordinate atom has 5 choose 3 or 10 ways of choosing the sets of 3 
geminal atoms of its possible geminal tetrads. In addition, there are 3 choose 2 or 3 ways 
of selecting the two ends of the tetral structures involving 3 geminal atoms. Thus, there 
are 30 tetral structures in the toufl characterization of the geminal tetrads of a ~ntacoordinate 
center. There is an obvious desire to establish and remove redundancies that remain in 
the complete set of geminal and vicinal tetrads. This section describes a rule for excluding 
most of  these redundant tetrads. 

Let ft'(S) denote the set of tetrads associated with the chemical stereograph 
S as a result of the correspondence convention. Two geminal tetrads in ft'(S) are siblings 
in S if they involve the same central atom. Since the atoms of  a molecule exist in 
hybridization states with characteristic symmetry groups, the stereocity of most geminal 
tetrads can be deduced from a knowledge of the stereocity of any of  its siblings. (This 
may not be the case lbr the generalized geminal tetrads mentioned at the end of  
section 3.1.)This sibling redundancy can be seen in structure 4. For example,  we 

a f 

c tn 

4 
Scheme 2. 
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know from the geometry of  an sp 3 asymmetric center that the positions of atoms 
a, b, d, and e determine the position of atom c relative to its geminal atoms. Thus, 
the stereocity of the geminal tetrad a < b < e < d determines the stereocity of  the 
s i b l i n g s a < b <  e <  c a n d a < b < c <  e. 

A similar result holds for vicinal tetrads. Two vicinal tetracls are siblings if they 
have the same centers. The stereocity of two nonsibling geminal tetracls sharing their 
respective centers with a vicinal tetrad combined with the stereocity of  that vicinal tetrad 
determines the stereocity of all siblings of that vicinal tetrad. For example, if we know 
the stereocity of the nonsibling geminal tetracls a < b < e < d and f <  e < b < g in 
structure 4 as well as the stereocity of the vicinal tetrad a < b < e <f,  then we can deduce 
the stereocity of the vicinal siblings a < b < e < g and c < b < e < h. It is this redundancy 
amongst sibling vicinal tetrads that underlies Wipke's [6] development of computer 
names for conformers. 

Now suppose S is a stereograph with chemical graph G. A geminal or vicinal 
tetrad T is represented in S if there is a biedge of S that corresponds to a sibling of  T. 
It follows from the preceding discussion that if T is represented in S, then the stereocity 
of T can be deduced from S even if T is not directly con'esponded to a bieclge ofS. Retuming 
to fig. 3, we see that the geminal tetrad T =  c < b < a < e has a tetral structure that does 
not correspond to any biedge in the embedding graph, i.e. (ab, ce) is not a bieclge of 
the embedding graph. However, T is a sibling of the geminal tetrad a < b < e < e 
corresponding to the biedge (be, ae). Thus, T is represented in the embedding graph even 
though it does not correspond to an edge of the embedding graph. 

We will be primarily interested in stereographs of chemical entities which are 
either molecules or conformers. A stereograph of a molecule will be called a molecular 
stereograph if it satisfies two conditions. First, all of its biedges must correspond to f~ed 
geminal and fixed vicinal tetrads. As discussed in the introduction to section 3, only 
fixed tetrads have the same assigned stereocity over all conformational states of  a 
molecule. Second, every fixed geminal and fixed vicin'~ tetrad of  that molecule must 
be represented by a biedge. This second condition simply says that if a vicinal or geminal 
tetrad has a single, and consequently well-defined, stereocity over all conformational 
states of a molecule, then that bit of structural inlbnnation is represented by at least one 
biedge in the molecular stercogmph. A stereograph of a molecule is called a conformational 
stereograph of  that molecule if all of its biedges represent geminal and vicinal tetrads 
and if every gem inal and vicinal tetrad of that molecule is represented by a sibling tetrad. 

The stereograph S in fig. 3, which is represented by the chemical graph and 
embedding graph, is not a molecular stereograph. This is because the carbon-carbon bond 
is free to rotate. Consequently, a < b < c < d is a free vicinal tetrad. Since it is represented 
by, in fact corresponds to, the biedge (be, ad) of the embedding graph, S cannot be a 
molecular stereograph. However, S is a conformational stereograph. Every edge of its 
embedding graph corresponds to either a geminal or vicinal tetrad. Moreover, every 
geminal or vicinal tetrad defined on the chemical graph is represented by a biedge of  S. 

The informational redundancy in a family of sibling tetrads can be used to dramatically 
reduce the number o[ tetrads that must be included in the stereographic representation 
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of a molecule or conformer. However, diminishing informational redundancy can reduce 
informational accessibility, especially if rather arbitrary rules are used to eliminate 
redundancies. We attempt some sort of  middle ground by introducing the following 
sibling selection rules for filtering out "redundant" sibling geminal and vicinal tetracls. 

Assign each atom of a tetrad, geminal or vicinal, a value of 0 if it is a hydrogen, 
1 if it is a halogen, 2 if it is a generic ligand, and 3 otherwise. Let the score of the tetrad 
be the sum of its two end values. Accept only those geminal siblings with the lowest 
score and accept only those vicinal siblings with the highest score. Of the geminal 
siblings with the lowest score, accept only those with the highest number assigned to 
the noncentral center, 

To determine which geminal and vicinal tetrads are to be corresponded to biedges 
in the stereograph of l, 1, 2-trisubstituted ethane, we shah use the indexing of its chemical 
graph as given in fig. 3. Under the scoring system, the three ligands a, d, and e are assigned 
scores of 2 and the two carbon atoms b and c are assigned scores of 3. Table 1 gives 
all of the tetrads defined on the chemical graph and their assigned scores. There are only 

Table 1 

The geminal and vicinal tetrads of the chemical graph in fig. 3, grouped into 
sibling families and assigned scores. Tile biedges are given in standard form 

Tetrad Biedge Type Sibling family Score 

a < b < c < e (bc, ae) geminal b 4 

a < b < e < c (be, ac) geminal b 5 

c < b < a < e (ab, ce) geminal b 5 

a < b < c < d (bc, ad) vicinal bc 4 

e < b < c < d (bc, ed) vicinal bc 4 

two sibling families, the geminal family defined by the central atom b and the vicinal 
family defined by the center pair bc. Had we included the hydrogen, then there would 
have been another geminal family of siblings having atom c for its central atom. 
Table 1 indicates that geminal tetrad a < b < c < e has the lowest score, so its biedge 
(bc, ae) is included in the stereograph. Since both sibling vicinal tetrads have the same 
score, both of their biedges (be, ad) and (bc, de) are included in the stereograph. In this 
case, the geminal tetrads could not be further resolved by the number assigned to the 
noncentral atoms. However, in a molecule having a bromochlorofluoromethyl group, the 
latter number ensures that the associated geminal tetrads have nontenninal atoms for 
centers. 

3.6. SOME EXAMPLES OF MOLECULAR AND CONFORMER STEREOGRAPHS 

Figures 6 - 8  depict some chemical stereographs satisfying the sibling selection 
rules that illustrate a variety of points. Figure 6 gives the molecular stereographs of 
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Fig. 6. The molecular stereograph of bromoethene and cis-dibromoethene. 
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Fig. 7. The molecular stcreograph of three 1-substituted fluoroethanes. 
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Fig. 8. Conformational stereographs of three dihydroxycyclohexanes. 

bromoethylene and cis-dibromocthylene. The chemical graph of cis-dibromoethylene in 
fig. 6(b) is aesthetically drawn to suggest the cis arrangement. However, the drawing 
does not mean that thc chemical graph itself possesses any information concerning the 
cis versus trans arrangement. The inlormation resolving the cis-trans distinction is entirely 
contained within the synperiplanar tetrad (bd, ae). 

As molecular stereographs, both stereographs in fig. 6 must contain biedges 
representing all fixed geminal tetrads. We see from both stereographs that the geminal 
retrads are all antiperiplanar. Since the vicinal tetrad is also planar, it is easily deduced 
that all six atoms of dibromoethylene are planar. 

Figure 6 also illustrates how our sibling selection rules govern the inclusion of 
biedges in the stereograph. For bromoethylene, the geminal biedge (bd, el) has a score 
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of 1, whereas the sibling biedge (df, be), which shares center d for the central 
atom, has a score of 4. Consequently, (df, be) is not included in the stereograph. 
Similarly, the vicinal biedge (bd, cJ) has a score of 0, whereas its sibling (bd, ce), 
which shares the center pair bd, has a score of 1. Consequently, (bd, cf) is not included 
in the stereograph. 

Figure 7 returns to the stereochemical problem posed by the molecules 1 -3 ,  the 
1-substituted-l-fluoroethanes. In this figure, the methyl, amino and phosphino groups are 
treated as ligands whose indices are associated with the central atom. We first note that 
the ordering invariance rule applies to the two tetrads sharing atoms d and e as ends. 
A comparison of the first two stereographs in fig. 7 clearly indicates that the two 
molecules differ only in their handedness. A comparison of the first and third stereographs 
reveals that the amino and phosphino groups indexed by c are in the same position relative 
to the atoms indexed by b, d and e. Thus, the phosphino group is in the same relative 
position as the amino group. 

This comparison was facilitated by the fact that the ordering invariance rule 
applied. In the next section, we will illustrate how such comparisons are made 
on 1, 1-disubstituted-1-Iluoroeth~mes in which the hydrogen is replaced by another halogen. 
In this case, tho ordering invariance rule does not apply. 

In fig. 6, all general and vicinal tetrads are tixed so that both stereographs are 
molecular as well as conformational stereographs. On the other hand, the stereographs 
in fig. 7 are molecular, but not conformational stereographs. 

Figure 8 presents some conlbmlational stereographs associated with three 1, 2- 
dihydroxycyclohexanes. Again, we note that all depicted tetrads satisfy the ordering 
invariance rule. In the discussion of the stereographs in fig. 8, it is informative to 
compare the accessibility of the structural information contained in the Newman projection 
with the accessibility of similar information in the stereographs. 

We begin by showing how the stereographs differentiate the stereochemistry of 
the chiral centers. These distinctions are confined to the geminal tetrads in the M 
columns. Clearly, the left-handed (dc, ij ) geminal tetrad with central atom c in the middle 
stereograph differs from the corresponding right-handed tetrads of the first and third 
stereographs. On the other hand, all three (bc, gh) geminal tetrads with central atom b 
are right-handed. It follows that the relative handedness of the three molecules is the 
same at the chiral center of carbon b, but not at carbon c. These observations are also 
quite apparent from the Newman projections. 

The ring conlbrmations are represented by tetrads whose ends are given in the R 
column. Both the Newman projections and the stereograph representations clearly indicate 
that 8 and 9 agree in their ring conformation, but differ from 10 in that regard. The 
Newman projections present these distinctions as distinctions in overall shape, chair 
versus boat. The stereographs present these distinctions as sequences in handedness 
changes in the dihedral angles as one moves around the ring. In the chair conformation, 
this sequence is left, right, left, right, left, right. For the boat conformation, this sequence 
is right, degenerate, left, right, degenerate, left. In every case, the vicinal tetrads defining 
the ring have cis clinicity. 
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The arrangement of the two hydroxyl groups relative to each other is distinguished 
by the single (bc, gi) tetrad in column L. The synclinal(+), antiperiplanar, and synperiplanar 
arrangements are easily distinguished by the stereocity of the respective tetrads for the 
three structures. The Newman projections are designed to make such observations transparent. 

Finally, the arrangement of the hydroxyl groups relative to the arrangement of the 
ring atoms is given by the remaining vicinal tetrads (ab,fg), (bc, ai), (bc, gd), and (cd, ie). 
These vicinal tetrads have both a ring atom and an oxygen atom as ends. The stereographs 
clearly differ in the stereocities of these tetrads. To discuss this difference, we shall say 
a tetrad is intermediate to two other tetrads if the former shares a center with each of 
the latter two tetrads and the latter two tetrads share no centers with each other. The first 
stereograph t12 an anfiperiplanar tetrad (bc, ai) and a synclinal(-) tetrad (bc, gd) intermediate 
to a synclinal(+) tetrad (ab,fg) and another antiperiplanar tetrad (cd, ie). The second 
has two synclinal(-) tetrads intermediate to two synclinal(+) tetrads. Finally, the third 
has an anticlinal(-) tetrad and an anticlinal(+) tetrad intermediate to two antiperiplanar 
tetrads. 

Collective statements of this type are difficult to make from the Newman projection 
for a number of reasons. Although the Newman projection is designed to convey the 
nature of particular dihedral angles, it is not designed to do this for very many dihedral 
angles in a single diagram. For example, the natures of the dihedral angles Zfabg and 
Zicde are not at all obvious from the Newman projection. Moreover, the Newman 
projection gives a holistic view of structure. The collective statements of the preceding 
paragraph require that observations on individual dihedral angles be teased apart and 
then rearranged into a logical structure. This teasing apart and structural rearrangement 
is essentially what a stereograph is all about. Each isolated tetrad together with its 
stereocity is analogous to an elemental statement about stereochemical structure. Thus, 
the stereograph can be thought of as a way of structurally arranging elemental stereo- 
chemical statements. 

The comparisons with the Newman projection are made to emphasize the point 
that different representations of structure make different things obvious. Here, we have 
used the term "obvious" in reference to human perception. If we are to use the computer 
as an "assistant" in molecular similarity analysis, we require representations that make 
chemically meaningful facts "obvious" with respect to "computer perception". The stereograph 
seems to be well suited in the latter regard. 

3.7. DETERMINING WHEN TWO CHEMICAL STEREOGRAPHS ARE EQUIVALENT 

All the comparisons between stereographs in figs. 6 - 8  have involved tetrads in 
which the ordering invariance rule applies. When this rule does not apply, one must use 
a method of comparison that takes into account different ordering conventions. To do 
this, we look first at how one ultimately determines when two chemical graphs are 
equivalent. In a vague sense, one can say two chemical graphs are equivalent if one can 
define a matching between the atoms that preserves the bonding arrangement. More 
specifically, let G = (V, E) and G = (V', E') be two chemical graphs. Then, G and G" 
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are isomorphic if there exists a one-to-one mapping f :  V ---) V', which preserves atom 
and bond types, and such that uv is a bond of G, i.e. uv ~ E, if and only if f ( u ) f ( v )  
is a bond of G', i.e. f ( u ) f ( v )  ~ E'. Clearly, the one-to-one correspondence given by 
a <--+ v, b +--r w, c ~ x, d ~ y, e ~ z defines an isomorphism between the chemical graphs 
11 and 12. This correspondence preserves atom types, i.e. atoms with indices c and x 
are both oxygens. It preserves bonds and their types, i.e. indices de define a double bond 
in 11 and the corresponding pair of indices yz define a double bond in 12. Thus, 11 and 
12 are isomorphic. Clearly, no such isomorphism exists between 11 and 13. 

C a - C  b C v - - C  w C v - - C  w 

I ] I 
Ce~Cd Cz-- Cy Oz--Cy 

11 12 13 

Scheme 3. 

The same concept of  isomorphism extends directly to stereographs. Roughly 
speaking, two stereographs are equivalent if one can define a matching between the 
atoms that preserves atom type, preserves bonds and their types, and preserves tetrads 
and their stereocities. More specifically, let S = (V, E, BE) and S' = (V', E' ,  BE' )  be two 
stereographs with their associated correspondence conventions. A one-to-one 
function f :  V---) V' is a biedge isomorphism between S and S' if f is an isomorphism 
between the chemical graphs (V, E) and (V', E')  of  S and S' and if b/= ( f (a ) f (b ) , f ( c ) f (d ) )  
is a biedge of BE" whenever b = (ab, cd) is a biedge of BE and vice versa. Let T(b) 
and T(bf) be the tetrads that are corresponded to the biedges b and b/under the respective 
correspondence conventions of S and S'. The stereographs S and S' are isomorphic if 
there exists a biedge isomorphism f :  V ~ V' such that for every biedge b in BE, T(b) 
and 7~(b) are isomorphic as tetrads with respect to f restricted to the point set of  T. 

To see how the definition works, consider the two hydrogen-reduced molecular 
stereographs of molecule 14 in fig. 9 which, as stereographs of the same molecule, must 
be isomorphic. There is only one chemical graph isomorphism f w h i c h  preserves atom 
types. It is given by a+-~z, b~-rx ,  c~-~w, d<--+v, and e ~ y .  Under this iso- 
morphism, the right-handed tetrad T = c < b < a < d is mapped to the left-handed tetrad 
T" = v < x < z < w. However, because the ordering invariance rule does not apply, this 
does not mean the tetrads are not handedly isomorphic. To make this determination, we 
must compare the T'-ordering v < x < z < w of the set {v, w, x, z} to the ordering of 
the set induced by the restriction f l  P(T) of f t o  the point set P(T) = {a, b, c, d}. Since 
T = c < b < a < d, the ordering induced on {v ,w ,x ,  z} is given by f (c )  < f ( b )  < f ( a )  
< f ( d )  or w < x < z < v. This latter ordering is an odd permutation of  the T'-ordering. 
Thus, T and T' are handedly isomorphic with respect to f l  P(T), where f l  P(T) denotes 
the function frestricted to the point set {a, b, c, d} ofT. Since Tand T' also have identical 
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C H ' i - -  Br CH3 ' /I  

I Br 

14 15 

F c Fw Fw 
[ I I 

C a l l 3 - C b -  Br d C z H 3 -  ~x - Brv C z H 3 -  ~x - Brv 

I e l y  l y  

cd de vw vy vw vy 

hx J %xJ 
T Y ] 
ce wy wy 

Fig. 9. The molecular stereographs of two 
1, 1, 1-bromofluoroiodoethane isomers. 

clinicities, they are isomorphic with respect to f l  P(T). Because this is true for each of  
the three biedges of the stereographs of 14, the stereographs are isomorphic. 

To show that the first stereograph of molecule 14 is not isomorphic to the stereograph 
of 15, we note first that there is only one chemical graph isomorphism, which must be 
the one in the preceding paragraph since the two molecules are stereoisomers. This 
time, the right-handed tetrad T = c < b < a < d is mapped to the right-handed tetrad 
T' = v < x < z < w. As before, the T'-ordering v < x < z < w of the point set P(T') is 
an odd permutation of the ordering of P(T') as defined by f, namely f(c) <f (b )  < f ( a )  
<f(d)  orw < x < z < v. It follows that T and T' are not sterically isomorphic and, consequently, 
the two stereographs are not isomorphic with respect to this chemical graph isomorphism. 
Since there is no other chemical graph isomorphism, the two stereographs are not 
isomorphic. 

In comparing these two stereographs, we have implicitly been using our ordering 
convention for the correspondence convention required for each stereograph. The definition 
of  stereograph equivalence does not require that the two stereographs be constructed 
using the same correspondence convention. The definition only requires that one know 
the ordering of the tetracl that corresponds to each bieclge. 

4. Application areas of stereographs founded on the concept of isomorphism 

The utility of a representation reflects the variety and significance of its applications. 
Here, we shall briefly discuss three that aid in the evaluation of the significance of the 
roles for including and excluding tetrads from the molecular and conformational stereographs. 
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4.1. STRUCTURAL REPRESENTATION 

A structural representation determines the class of those chemical entities having 
the same or isomorphic representations. This class is called an equivalence class. Such 
equivalence classes and their representation underlie how we recognize and talk about 
the chemical entities of interest to us. They have a long history [32] and well developed 
mathematical theory [33]. Thus, we should begin by noting that the concept of a stereograph 
isomorphism sets up the necessary equivalence classes for any chemical entity that one 
might represent by a stereograph. 

The canonical sequences discussed in the introduction provide a general method 
of assigning a unique name to an equivalence class. The methods in the cited references 
can be used to assign a unique canonical sequence to a chemical stereograph. In particular, 
if we view a stereograph as a special case of a complex, the canonicalization scheme 
in [34] is directly applicable. This canonical sequence can, in turn, be converted to a 
single number or molecular ID if desired. Thus, stereographs can serve as a basis for 
registering and "naming" [35] either molecules or conformers. 

Although canonical sequences are useful concepts in computational chemistry, 
they do not have the visual impact of the stereographic diagrams displayed in the figures. 
We have seen how the sibling selection rules aid the visual perception of a stereograph 
by reducing the number of tetrads. Our diagrams were designed to convey an understanding 
of a stereograph and how its stereochemical elements function together. If one's primary 
goal is to bring a holistic picture of the molecule or conformer to mind, then further 
reductions in the redundancies in the stereographs should give rise to perceptually more 
efficient stereochemical and conformational diagrams. 

We have focused on two types of molecular entities: structural formulas and 
conformers. In doing so, we have let the vertices and edges of the chemical graph denote 
atoms and covalent bonds, respectively. Such interpretations are not essential to either 
stereographs or to the formalism being developed. The vertices, edges and tetrads of a 
stereograph should represent whatever structural elements best characterize the chemical 
entity under study. However, if the underlying graph of the stereograph is no longer a 
chemical graph, the redundancies amongst a family a sibling tetrads may no longer 
suffice as a basis for reducing the number of included tetrads. In addition, if one 
considers tetrads other than geminal and vicinal tetrads, the ordering convention developed 
in section 3.2 may no longer suffice tor the correspondence convention that maps each 
biedge of the embedding graph to a unique tetrad. 

4.2. MOLECULAR SYMMETRY ANALYSIS 

We have used the concept of an isomorphism to determine if two chemical 
stereographs S and S' are isomorphic. In this section, we consider the case in which S 
and S' denote the same stercograph. 

An atom x is automorphic to an atom y in a particular stereograph S if there exists 
an isomorphism between S and itself that maps x to y. One can show that if x is auto- 
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morphic in S to y, then y is automorphic to x in S. Thus, we shall simply say x 
and y are automorphic in S. 

One can show that methyl hydrogens are always automorphic to each other in the 
molecular stereograph. For example, the stereograph of monosubstituted methane is 
given in fig. 10(a). To show that H,~ is equivalent to H b in that molecule stereograph, 

Ha X a 
\ \ 

C d - -  X e C d - -  X 
e 

Ha X a 

I I 
H b ~ C d  ,, X e H b ~ C  d - -  

I I 
Hc H c 

Xe 

ab 

/ do% 
bc ac 

de~- - - - - -bc- - - - - - - -~da 

Fig. 10. The molecular stereographs of monosubstimted and disubstituted 
methane, illustrating the concept of hydrogen equivalence. 

consider the biedge isomorphism f given by a ~ b, b ~ c, c --~ a, d ~ d, e --~ e. Under f, 
the left-handed biedge (de, ab) with associated ordering a < d < e < b is mapped to the 
biedge (de, bc) having the same handedness. The ordering of the point set {b, c, d, e} 
under the latter biedge is given by b < d < e < c. The ordering induced by f on this set 
is given by f (a )  < f (d )  < f(e)  < f (b)  or b < d < e < c. Since f does not change the 
ordering and since the two biedges have the same handedness, the two biedges are 
handedly isomorphic. Similarly, the left-handed biedge (de, bc) is mapped to the biedge 
(de, ac) having opposite handedness. The ordering of the point set {a, c, d, e} under 
the latter biedge is given by a < d < e < c. The ordering induced by f is given 
by f (b )  < f (d )  < f ( e )  <f (c )  or c < d < e < a, an odd permutation of a < d < e < c. 
Thus, the latter two edges are handedly isomorphic. Similarly, one shows that the right- 
handed biedge (de, ac) is handedly isomorphic to the left-handed biedge (de, ab). 
Since all of the tetrads have trans clinicities, f i s  an automorphism. Thus, Ha is equivalent 
to nb.  
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On the other hand, the two hydrogens in disubstituted methane are not equivalent 
if the two ligands are not identical. In this case, there are only two biedge isomorphisms, 
namely the identity mapping and the mapping f given by a --+ a, b --+ c, c --+ b, d -+ d, 
e--+ e. Under f ,  the biedge (de, bc) is mapped to itself. This biedge orders its 
point set according to b < d < e < c. However, the mapping orders this point set 
according to f (b)  < f(d)  < f (e)  < f(c)  or c < d < e < b, an odd permutation of the 
ordering b < d < e < c. Thus, (de, bc) is not handedly isomorphic to itself under f It 
follows that f is not an automorphism. Consequently, H a is not equivalent to H b in 
disubstituted methane. 

Resolving issues of atom equivalence mathematically or computationally requires 
the higher resolution of stereochemistry afforded by the ordering explicitly incorporated 
into the tetrad. If one requires chiral centers to assign stereochemical features to atoms, 
then two methylene hydrogens are necessarily treated symmetrically. This is not the case 
when using molecular stereographs. 

The set of sibling tetrads included in the molecular stereographs of fig. 10 were 
determined by the sibling selection rules in section 3.6. The particular set of  tetrads that 
satisfied these rules gave rise to a simple and direct relationship between the chemical 
equivalence of two hydrogens and the automorphic equivalence of vertices on a molecular 
stereograph. Such would not have been the case used had the sibling selection rules been 
designed to exclude all but one tetrad from each sibling family. For example, had only 
the biedge (de, ab) been included in the first embedding graph of fig. 10, then one could 
not directly show that H~ is equivalent to either of the other two hydrogens, since H c 
would not be in a tetrad while the other two hydrogens would. This does not mean that 
hydrogen equivalence could not be defined in molecular stereographs involving only one 
sibling from each sibling family. It just means that the connection between the chemical 
and mathematical concepts underlying hydrogen equivalence would be less direct. 

It is easy to establish that the set of  automorphisms on a stereograph constitute 
a group. These automorphic groups are defined for complexes in general in [27], but are 
relevant to our special case of stereographs. Here, we only note the existence of this 
important research area and its potential relationship to the group-theoretic approaches 
briefly discussed in the introduction. 

4.3. STEREO-SPECIFIC SUBSTRUCTURE SEARCHING 

Another variant of the concept of an isomorphism underlies a stereo-specific 
definition of a substructure. Specifically, we call S a labeled substereograph of a stereograph 
S" if every vertex, edge and tetrad in S is also a vertex, edge and tetrad of S'. Now let 
S and S" be any two stereographs. Then, S is a substereograph of S'  if S is isomorphic 
to a labeled substereograph of S'. 

Our sibling selection rules lead to a less direct relationship between the chemical 
concept of a stereo-specific substructure and the mathematical concept of a substereograph. 
The problem is illustrated in fig. 11. The substructure of the query is represented by 
structure 16. The remaining structures represent three molecules in a database. The 
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Fig. l l. Molecular stereographs of some substituted 1, 1-aminofluoroethanes. 
The complete molecular stereograph for 19 is depicted. Only the asterisked biedges 
would be included in the molecular stereograph satisfying our scoring rules. 

methyl hydrogens have not been depicted for these molecules, since they are irrelevant 
to the argument and their inclusion would only complicate the diagrams. A correct 
stereo-specific substructure search would list out molecules 17 and 19, but not 18. 

The molecular stereographs corresponding to substructure query 16 and molecules 
17 and 18 were constructed to satisfy the sibling selection rules. However, the molecular 
stereograph associated with molecule 19 was constructed so that each fixed geminal and 
vicinal tetrad is not only represented by a biedge in the molecular stereograph, but also 
corresponds to a biedge. Such a molecular stereograph is called a complete molecular 
stereograph. The complete embedding graph of molecule 17 is identical to that of I9. 
The corresponding complete embedding graph of substructure 16 is obtained from that 
of 19 by simply deleting all biedges except (be, ad) and the two biedges that are shown 
for 16 in the figure. The complete embedding graph of molecule 18 is obtained by reversing 
the handedness of each tetrad in the embedding graph of 19. 

It is easy to see how the complete molecular stereograph of 16 is a substereograph 
of the complete molecular stereographs of 17 and 19, but is not a substereograph of the 



36 M. Johnson et al., Chemical stereographs 

the graph-theoretic concept of a stereograph in a manner that should prove useful in other 
areas of mathematical chemistry. 
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Appendix: Glossary of terms 

Tetrad: An ordered set a < b < c < d of four points. Points a, b, c, and d are referred 
to as the first end, first center, second center, and second end. If the tetrad is 
embedded in ~a, angle ~abed is the dihedral angle of the tetrad. 

Clinicity of a tetrad: A property of a tetrad which is cis, degenerate or trans as its 
associated dihedral angle is less than, roughly equal to, or greater than 90 ° . 

Handedness of a tetrad: A property of a tetrad which is left-handed, degenerate, and 
right-handed as its associated dihedral angle is negative, roughly equal to either 0 ° 
or 180 ° , or positive. 

Stereocity of a tetrad: A specification of the clinJcity and handedness of a tetrad. 

Tetral structure: A specification of the two ends and two centers of a tetrad. The four 
t e t r a d s a < b < c < d , d < b < c < a , a < c < b < d ,  a n d d < c < b < a a l l h a v e  
the same tetral structure. 

Vicinal tetrad: A tetracl whose ends are two vicinal atoms and whose centers define the 
center bond. 

Geminal tetrad: A tetrad whose points define three geminal atoms and a central atom 
and such that the central atom is one of the tetrad's centers. 

Free/fixed tetrad: A tetrad whose stereocity can/cannot change from one conformer to 
the next. 

Ordering convention: A convention based on the chemical graph for selecting one of  
the four tetrads having the same tetral structure. 

Biedge: An ordered pair (ab, ca r) which specifies the tetral structure with centers a and 
b and ends c and d of a tetracl defined with respect to a graph. 

Correspondence convention: A convention for setting up a one-to-one correspondence 
between a set of tetracls and a set of  biedges defined with respect to the graph. 

Generic embedding graph: The directed graph whose edges constitute a set of  biedges 
defined with respect to another graph, usually a chemical graph. 

Embedding graph: A generic embedding graph in which stereocities have been assigned 
to each of its biedges. 

Chemical stereograph: A chemical graph together with an associated embedding graph 
involving only geminal and vicinal tetracls. 
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Molecular stereographs: Roughly speaking, a chemical stereograph which specifies the 
stereocities of all fixed vicinal and geminal tetrads. 

Conformer stereograph: Roughly speaking, a chemical stereograph which specifies the 
stereocities of all vicinal and geminal tetrads. 

Sibling tetrads: Two geminal tetrads are siblings if they share the same central atom. 
Two vicinal tetrads are siblings if they share the same central bond. 

Sibling selection rules: A set of rules for deciding which tetrads in a set of sibling tetrads 
are actually corresponded to, as opposed to being simply represented by, biedges in 
a chemical stereograph. 
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